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1 Introduction 
 
Today, scientists, engineers, and medical researchers routinely use computers to simulate 
complex physical phenomena.  Such simulations present new challenges for computational 
scientists, including the need to effectively analyze and visualize complex three-
dimensional data.  As simulations become more complex and produce larger amounts of 
data, the effectiveness of utilizing such high resolution data will hinge upon the ability of 
human experts to interact with their data and extract useful information. 
 Here we describe recent work at the SCI Institute in large-scale scalar, vector, and 
tensor visualization techniques.  We end with a discussion of ideas for the integration of 
techniques for creating computational multi-field visualizations. 
 

 
2  Scalar Field Visualization 
 
 

2.1  Direct Volume Rendering 
 
Direct volume rendering is a method of displaying three-dimensional volumetric scalar data 
as a two-dimensional image.  Direct volume rendering is probably the simplest way to 
visualize volume data.  The individual values in the dataset are made visible by an 
assignment of optical properties, like color and opacity, which are then projected and 
composited to form an image.  As a tool for scientific visualization, the appeal of direct 
volume rendering, in contrast to other rendering techniques such as isosurfacing or 
segmentation, is that no intermediate geometric information needs to be calculated, so the 
process maps from the dataset directly to an image. 
 It is typical to begin the design of a transfer function with the goal of visualizing the 
interface between two different materials in a volume dataset as a thin surface.  User 
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defined transfer functions are frequently created as a mapping from a scalar field data value 
to opacity.  To use this type of transfer function to visualize the interface between two 
materials, the user might set the function to be near zero over the domain of values except 
for a narrow spike centered on a single data value.  This data value might initially be 
guessed at and then iteratively refined until the desired effect is achieved.  More automatic 
methods for designing transfer functions for locating material interfaces have been 
explored.  
 The design of transfer functions using semi-automatic methods with abstracted levels 
of interaction becomes very important as the size of datasets, and hence required rendering 
time, grow with advances in measurement equipment and techniques.  Also, where datasets 
and associated volume rendering methods are more complex (such as in vector or tensor 
visualization), methods for guiding the user towards useful parameter settings, based on 
information about the goal of the visualization, become a necessary part of generating 
informative scientific visualizations.  Some of our initial work in this area is shown in 
Figure 1 [7]. 
 

 
Figure 1: Manipulation of an automatically generated two-dimensional opacity function to 
selectively render different material boundaries: skin (upper right), bone (lower right), and 
the registration cord laced around the body prior to scanning (lower left). 
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In some cases volume visualization is more intimately tied to the imaging process.   
    

   (a) (b) 

 
For instance, in electron microscrope tomography (EMT) the set of projections (i.e. the 
sinogram) is incomplete, which results in reconstruction artifacts that adversely affect the 
quality of virtually any direct rendering or visualization strategy.  Through a surface fitting 
process [3] we can estimate missing parts of the the sinogram and create better 3D 
reconstructions that are used for volume rendering or subsequent 3D segmentation. 
 
 

2.2 Isosurface Extraction 
 
Isosurface extraction is a powerful tool for investigating volumetric scalar fields.  The 
position of an isosurface, as well as its relation to other neighboring isosurfaces, can 
provide clues to the underlying structure of the scalar field as seen in Figure 3.  Scientists 
need the ability to change the isovalue dynamically in order to gain better insight into 
simulation results. 
 In recent years, researchers have created methods for accelerating the search phase for 
isosurface  extraction [4, 5, 12, 14, 15] all of which have a complexity of O(n). We 
introduced the span space [11] as a mean for mapping the search onto a two-dimension 
space.  Using the span space, we proposed a near optimal isosurface extraction (NOISE) 
algorithm that has a time complexity of 0 (vn + k), where k is the size of the isosurface.  
Cignoni et al. [2] employed another decomposition of the span space leading to a search 
method with optimal time complexity of O(log n + k), albeit with larger storage 
requirements. 

Figure 2: MIP renderings of EMT volumes: (a) from the raw data exhibits reconstruction 
artifacts that obsfuscate the boundaries of this spiney dendrite, and (b) from the original data 
including estimates of the missing views – brings to light a more coherent picture of dendrite 
structure. 
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 Our recent research effort has concentrated on the k factor, i.e., the size of the 
generated isosurface, in the complexity analysis. To this end, we have concentrated on view 
dependent extraction [10] and a ray-tracing approach that does not require the creation of an 
intermediate polygonal representation [13]. 
 
 
2.2.1 View Dependent Isosurface Extraction 
 
View dependent isosurface extraction [10] is based on the observation that isosurfaces 
extracted from very large datasets tend to exhibit high depth complexity for two reasons.  
First, since the datasets are very large, the projection of individual cells tends to be sub-
pixel. This leads to a large number of polygons, possibly non-overlapping, projecting onto 
individual pixels.  Secondly, for some datasets, large sections of an isosurface are internal 

Figure 3: Imaging of seismic data. Two isosurfaces of a constant magnitude are shown 
embedded in a volume visualization of the data. A  single trace and an SP-log curve at 
one of the wells are also  shown. 
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and, thus, are occluded by other sections of the isosurface.  These internal sections, 
common in medical datasets, cannot be seen from any direction unless the external 
isosurface is peeled away or cut off.  Therefore, if one can extract just the visible portions 
of the isosurface, the number of rendered polygons will be reduced, and a faster algorithm 
will result. 
 We have created a view-dependent algorithm, see Figure 4, based on a hierarchical 
traversal of the data [10]. The algorithm exploits coherency in the object, value, and image 
spaces, as well as balancing the work between the hardware and the software.  First, 
Wilhelms' and Van Gelder's algorithm is augmented by traversing down the octree in a 
front-to-back order in addition to pruning empty sub-trees based on the min-max values 
stored at the octree nodes.  The second step employs coarse software visibility tests for each 
tree node which intersect the isosurface.  The aim of these tests is to determine whether the 
tree node is hidden from the viewpoint by previously extracted sections of the isosurface 
(thus the requirement for a front-to-back traversal). Finally, the triangulation of the visible 
cells is forwarded to the graphics accelerator for rendering by the hardware. At this stage, 
the final and exact [partial-] visibility of the triangles is resolved.  
 

 
Figure 4: A view-dependent classification of cells and isoline 

 
2.2.2 Real Time Ray Tracing of Isosurfaces 
 
The previous methods extracted the geometry of an isosurface as a collection of triangles.  
We have created an alternative method that generates a single image of the isosurface from 
a given point of  view [13]. No geometry is generated and thus a new image must be 
computed for each new point of view as well as each new isovalue.  The image is generated 
using a conventional ray-tracing in which one or more rays are sent from the user point of 
view through each pixel of the screen and into the scene and show in Figure 5. A trilinear 
interpolation is used to approximate the isosurface inside each cell. 
 The parallel nature of a ray tracing maps well into the architecture of massive parallel 
computers. A 64 CPU Origin 2000 can generate images of an isosurface in interactive rate 
(about 10 frames per second) even for a large dataset (approximately 1GB). The complexity 
of a ray tracing isosurface extraction is only O(m2 log n) where m2 is the size of the screen, 
i.e., it is linear with respect to the number of pixels in the final images, logarithmic with 
respect to the size of the data and does not depend on the size of the isosurface. 
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3 Vector Field Visualization 
 
Visualizing 3D vector field data is a challenge because current methods cannot effectively 
convey large amounts of directional information without visual clutter.  Researchers have 
developed a number of vector field visualization techniques using iconic representations, 
particle tracing methods, and stream constructions.  These methods are useful for showing 
certain field characteristics, but inherently suffer from visual clutter when applied globally.  
We believe that interactive data exploration can be enhanced by the combined use of 
several interface modalities. 
 Multimodal interfaces have been shown to increase user performance for a variety of 
tasks.  We have been investigating the synergistic benefits of multimodal scientific 
visualization using an integrated, semi-immersive virtual environment, the Visual Haptic 
Workbench [1].  In this system, immersion is enhanced by head and hand tracking, haptic 
feedback, and additional audio cues. 
 Since scientists would like to explore datasets over a wide range of scale, effective 
visualization must provide local inspection within a global context.  Conventional 
visualization methods render the entire dataset and interactively restrict or highlight areas of 
interest. Our multimodal interface allows for a rich combination of local and global data 
rendering methods, which results in reduced visual clutter, enhanced spatial context, and 
the possibility for novel interaction paradigms (Figure 6). 
 
 

4 Tensor Field Visualization 
 
The simulation of a physical system often requires one to characterize the material property 
of the various media within the simulation domain, such as density, electrical or thermal 
conductivity, diffusivity etc. Further, one usually characterizes materials as to whether or 
not they are homogeneous and/or isotropic.  Homogeneous materials are those whose 
properties do not depend on position. An isotropic material at any point has the same local 
properties in all directions, so a single scalar value is sufficient for the mathematical 
representation of those properties.  If, however, materials have some preferred directions, 
they are called anisotropic. Examples of tensors are common in material science, 
engineering and physics.  They include the conductivity s i j tensor, magnetic permutivity µ i 

j and dielectric susceptibility ? ij tensors, and the diffusion tensor  D ij [8]. 
 Diffusion Tensor MRI (DT-MRI) is an imaging modality that permits non-invasive 
measurement of tissue physical microstructure, via its influence on the local diffusion of 
water molecules.  In regions where the tissue has a linear organization, such as in 
myelinated axon bundles comprising the white matter in the brain, or in muscle tissue, 
diffusion is preferentially directed along the fiber direction, and this phenomenon can be 
measured with DT-MRI.  Getting meaningful images or models out of diffusion tensor data 
is very challenging, however, because each sample point has six degrees of freedom.  
Displaying this much information on a two-dimensional plane is possible [9], but extending 
this to three-dimensional tensor datasets is extremely hard because of the visual clutter 
caused when multiple projections of data representations overlap in screen space.  One 
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approach is to use judicious subsetting, whereby only the tensor samples within certain 
essential structures are shown, producing both a global image of the main  structure, as well 
as permitting local inspection of the tensor properties on the visible surface.  This is the 
approach taken in Figure 7, which visualizes half of a diffusion tensor volume from a 
human brain. Using simple boxes as the glyph for tensor representation reduces polygon 
count tremendously, which helps for interaction with this dataset, consisting of over four 
million tensor data points. 
 
 

5 Future: Computational Multi-Field Visualization 
 
Computational field problems; such as computational fluid dynamics (CFD), 
electromagnetic field simulation, and weather modeling -- essentially any problems whose 
physics can be modeled effectively by ordinary and/or partial differential equations--
constitute the majority of computational science and engineering simulations.  The output 
of such simulations might be a single field variable (such as pressure or velocity) or a 
combination of fields involving a number of scalar fields, vector fields, and/or tensor fields.  
As such, scientific visualization researchers have concentrated on effective ways to 
visualize large-scale computational fields.  As noted above, most of our (and others) current 
and previous visualization research has focused on methods and techniques for visualizing a 
computational field variables (such as the extraction of a single scalar field variable as an 
isosurface).  While single variable visualization often satisfies the needs of the user, it is 
clear that it would also be useful to be able to effectively visualize multiple fields 
simultaneously.   
 In our opinion, an area ripe for research is what we will term “multi-field” visualization 
in which a scientist could visualize combinations of the above fields in such a way as to see 
the interactions of the fields.  The challenges for such multi-field visualizations are many: 
large-scale data, complicated geometries, heterogeneous and anisotropic material 
properties.  Below we give two examples of multi-field visualization that illucidate the 
challenges of involved with providing a researcher with intuitive and useful visual feedback 
[6]. 
 In Figure 8, we give a simple example of multi-field visualization from the simulation 
of electric current flow within an anisotropic media.  The sample volume has Dirichlet  (± 1 
volts) boundary conditions on the opposite sides of the cube (orthogonal to the plane of 
view) and Neumann zero flux boundary conditions on all other sides. The media is 
described by a single conductivity tensor with all non-zero elements. The result is very 
unintuitive: the isosurfaces are no longer parallel to the sides of the cube and current lines 
are not orthogonal to these isosurfaces. Electric field lines will still be orthogonal to the 
isosurfaces, but will not be parallel to the sides of the cube. 
 In another example of multi-field visualization, Figure 9, we show the results of a 
large-scale finite element simulation of the distribution of electric current flow and voltage 
within an inhomogeneous model of the human head and brain.  The image shows a 
combination of an isovoltage surface and streamlines of current flow within the context of 
the magnetic resonance image scans and geometric head model. 
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 We are continuing our research on effective visualization techniques for such multi-
field simulations. 
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Figure 5: Ray tracings of the bone and skin isosurfaces of the Visible Woman. 



 11 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 6: Exploring an electrostatic charge field on the Visual Haptic Workbench.  
Streamlines show the global structure of the field, colored by proximity to the sources 
(red and green spheres) and the sink (blue sphere). The streamballs are obtained by 
local advection from the interaction point, represented by the purple proxy and yellow 
force vector to the left of the PHANToM stylus. 
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Figure 7: Visualization of a DT-MRI of a section of the brain using box glyphs. 
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Figure 8: Electric current flow within an anisostropic media 
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Figure 9: Electric current flow within the brain due to a localized source. 


